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INTRODUCTION 
 
Many exercises can be designed and tested in the fluid mechanics laboratory to study pressure distributions around bluff 
bodies in the wind tunnel. While many bluff objects, such as cylinders, spheres, miniature vehicles and buildings, can 
be studied, circular cylinders are, by far, the easiest [1]. This is because cross flow over a very long cylinder can be 
reasonably approximated as being two dimensional.  
 
A body is said to be streamlined, if fluid flow over it essentially follows the contours of the body. Here, the geometric 
shape of the body defines the geometric shape of the streamlines adjacent to the body. Airplane wings are examples of 
streamlined bodies. A body that is not streamlined is said to be bluff. Therefore, fluid flow over a bluff body follows the 
contours of that body only part way, or not at all. Here, then, the shape of the body does not define the shape of the 
streamlines adjacent to it. Cylinders, spheres, buildings, ships, trees, and animals, are examples of bluff bodies [2]. 
When flow that was near the surface ceases to follow the contour of the body, flow is said to have separated from that 
body. The point at which separation is first observed is called the point of separation [3]. An example of flow separation 
over the front of a car is shown below in Figure 1.  
 

                                           
 
                                    Figure 1:  Illustrated flow separation over the front of a moving automobile [2]. 
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ABSTRACT: Hands-on exercises were designed and tested in a subsonic wind tunnel to study pressure distributions 
around a circular cylinder in cross flow. They allowed students to collect their own data and use them to examine how 
the pressure on the surface of the cylinder changes with two different variables: the location of a given point along the 
circumference of the middle cross section of the cylinder and the magnitude of the Reynolds number of the flow. 
Plotted data produced curves very similar to those in the research literature. Detailed examination of results 
demonstrated how viscous flow behaviour in the upstream half of the cylinder differed from that on its downstream 
half. The influence of the magnitude of the Reynolds number on the ability of the viscous flow to recover pressure on 
the downstream side of the cylinder was demonstrated. 
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The study of flows over cylinders allows students to determine how the pressure changes with two different variables, 
which are the location of a point along the circumference of the cylinder and the magnitude of the Reynolds number of 
the flow [4].  It also gives them the opportunity to have practical experience with the concepts of pressure drag, flow 
separation and viscous wakes through hands-on learning [1].  
 
The variation of pressure over a circular cylinder is typically presented in fluid mechanics papers and textbooks as a 
graph [4-6]. The main purposes of that graph are to demonstrate and quantify the differences between the behaviour of 
ideal flows, which are assumed frictionless, and that of real flows, which always have friction. Three ways that are used 
to demonstrate these differences are the patterns of flow streamlines over the body [3], the creation, generation, and 
shedding of vorticity behind submerged objects [3], and the variation of pressure around the circumference of the 
cylinder [4-6]. Whereas the first two methods require sophisticated means to visualise the flow, the last one is quite easy 
to use, provided that one has access to a wind tunnel and some pressure probes. The purpose of this article is to 
illustrate the variation of pressure around the circumference of the cylinder by using data collected by undergraduate 
students in a subsonic wind tunnel. 
 
The remainder of the article is organised in the following manner: First D’Alembert’s paradox is stated and proved in 
the case of a circular cylinder; this paradox is used as a stepping stone to discuss pressure distributions around a 
cylinder in the cross flow of a viscous fluid. Next, the concept of the pressure coefficient is introduced and its use in the 
literature is illustrated and explained. Then, experiments carried out by students in the wind tunnel are described; their 
results are presented and compared to the literature. Finally, the results are interpreted to elucidate the effects of the 
magnitude of the Reynolds number on pressure distributions around a circular cylinder. 
 
D’ALEMBERT’S PARADOX APPLIED TO A CIRCULAR CYLINDER 
 
D’Alembert’s paradox applied to a cylinder states that the net pressure drag exerted on a circular cylinder that moves in 
an inviscid fluid of large extent is identically zero. This result is proved below. 
 
Consider the steady flow of a frictionless and incompressible fluid from left to right over a stationary circular cylinder 
of radius r = a. If the flow is horizontal and uniform at infinity with magnitude U and pressure ∞P there, then, its 
velocity V, in the vicinity of the cylinder is given in cylindrical coordinates (r, θ) by: 
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where 

er  and 
eθ  are unit vectors in the r- and θ-directions, respectively. From Eq. (1), the magnitude of the velocity at 

any point is given by: 
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On the surface of the cylinder, where r = a, the magnitude given in Eq. (2) becomes: 
 

θsin2UV =  
 
The pressure, pc, at a point of coordinates (a, θ) on the surface of the cylinder is found by using Bernoulli’s equation 
along the streamline through that point. It is given by: 
 

( )p p Uc = + −∞

1
2

1 42 2ρ θsin .                                                                                                                                  (3) 

 
Since this flow has no friction, the total drag is due to pressure and it can be obtained by evaluating the following 
integral over the surface of the cylinder: 
 

F p dAD c
A

= − ∫ cosθ ,                                                                                                                                                     (4) 

 
where pc is given by Eq. (3), and dA is an element of surface area on the surface of  the cylinder given by dA aLd= θ ,  
with L being the length of the cylinder. Evaluation of the integral in Eq. (4) around the circumference of the cylinder 
yields: 
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which is identically zero, thus, verifying D’Alembert’s paradox. Historically, this result was called a paradox because 
real fluids, which are all viscous, do, in fact, exert drag forces on cylinders moving in them. This paradox is an excellent 
stepping stone to use to explain some features observed in the flow of viscous fluids around, or over immersed, objects 
of all kinds.  
 
What happens in inviscid flow is that the pressure decreases continuously on the upstream half of the cylindrical surface 
in such a way that the drag force on that half is not zero. It can be verified that it is given by:  
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However, pressure subsequently increases continuously on the downstream half of the cylinder in such a way that the 
drag force on it is the exact opposite of that developed over the upstream half. It can also be verified that it is given by: 
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Thus, for the whole cylinder, then, the two opposing drag forces combine to give zero, demonstrating that all the 
pressure lost on the upstream half is recovered over the downstream half of the cylinder. This is what makes the net 
drag force over the whole cylinder zero. It was discovered that this paradox was made possible by the absence of 
friction [7]. Indeed, such total recovery of pressure on the downstream half of the cylinder does not occur in a real fluid, 
no matter how low its viscosity is.  
 
THE PRESSURE COEFFICIENT 
  
In order to compare the variation of pressure around a bluff body for a variety of flow conditions, it is conventional to 
use a dimensionless ratio called the pressure coefficient Cp, which compares the pressure on the surface of the cylinder, 
Pc , to that at infinity, ∞P .  It is defined by:  
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When flow is inviscid, we combine Eq. (3) and Eq. (6) to get: 
 
  θ2sin41−=PC .                                                                                                                                        (7) 
 
Unfortunately, a closed-form expression of Cp as a function of θ , similar to that shown in Eq. (7), cannot be 
obtained analytically when the fluid is viscous. This is because neither the pressure distribution nor the velocity is 
known at every point along the surface of the cylinder. However, one can measure the pressures at many points along 
a chosen cross section of the surface of the cylinder experimentally, compute Cp point by point using Eq. (6), and 
subsequently plot the results as a function of the position, θ , of each point where measurements were made. When 
such data have been plotted, the shape of the resulting curve and the magnitudes of the pressure coefficients at 
different points can be compared to those of the graph of Eq. (7), to determine the effects of viscosity and the 
Reynolds number.  
 
The graph of pressure versus angular position on the circumference of the cylinder can be plotted using rectangular 
coordinates as shown in Figure 2, or using cylindrical polar coordinates, as shown in Figure 3. In Figure 2, only data for 
the top half of the cylinder were shown (from 0 to 180o). This is because flow is symmetrical about the horizontal 
diameter of the cylinder in inviscid, as well as viscous flows.  
  
In Figure 3, however, the whole cross section of the cylinder is shown. Radial lines shown there indicate the magnitude 
of the pressure coefficient on the surface of the cylinder. The sign convention is as follows: radial lines shown outside 
the surface of the cylinder indicate negative pressure coefficients, whereas radial lines drawn inside the cylinder 
represent positive pressure coefficients. In Figure 2, as in Figure 3, it can be seen that, for inviscid flows, pressure 
recovery is complete on the downstream side of the cylinder. This is demonstrated by the existence of a vertical axis of 
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symmetry at θ = 900. Such is not the case at all in viscous flows, even for a fluid such as air, which has a very low 
viscosity. 
 
EFFECTS OF THE REYNOLDS NUMBER ON PRESSURE DISTRIBUTIONS 
 
Students gathered data that would demonstrate the effect of the magnitude of the Reynolds number on the pressure 
distribution around the circular cylinder. The objective was to see whether or not they could generate results that were 
similar to those typically found in research papers and textbooks. Specifically, they were curious to see how close they 
could come to obtaining curves similar to those produced by Flachsbart [4] and Roshko [5], Figure 4. 
 
A circular cylinder of diameter 1 in (2.54 cm) was tested in the test section of an open-circuit-Eiffel wind tunnel Model 
402 B made by Engineering Laboratory Design, Inc., which has a velocity range of 3.0-48.7 m/s (10.0 – 160 fps) 
[11][12].   

                                                         
                                                        

Figure 2: Comparison of pressure variations [8]. 
 

                                  
Figure 3: Comparison of pressure variations [9]. 

 

 
    -------- R= 1.9 x 105 Flachsbart (1932) 
    _._._._ R = 6.7 x 105 Flachsbart (1932) 
    …….... R = 8.4 x 106 Roshko (1961) 
    _____  Frictionless flow 
 

Figure 4: Standard curves for pressure distributions around a circular cylinder [4][5]. 
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The cylinder was inserted in such a way that its longitudinal axis was perpendicular to the direction of the moving 
stream of air. This is known as cross flow. For a given setting of the wind speed in the tunnel, pressure probes were 
used to measure the pressure at selected points located all around the perimeter of the middle cross-section of the 
cylinder. Data were collected from 00 to 1800, using 10-degree increments around the upper surface of the cylinder. 
After a given run had been completed, the setting of the wind tunnel was changed to a new speed and the test was 
repeated. This process was continued until the maximum speed achievable by the wind tunnel was attained. This 
allowed for the cylinder to be tested at five different speeds: 15 mph, 30 mph, 60 mph, and 90 mph and 100 mph. The 
pressures that resulted from each speed setting were used to calculate the corresponding pressure coefficients using 
Eq.(6). 
 
The resulting coefficients were then plotted as a function of the location of the points along the circumference of the 
cylinder as shown in Figure 5.  That Figure also has the plot of Eq. (7), to make it possible to compare experimental 
data obtained using a viscous fluid to those obtained from the theory of inviscid flows. This resulted in a stack of 
curves that showed both the influence of the location of the point on the surface at which pressures were measured 
and the speed of air in the wind tunnel. Data obtained using speeds of 90 mph and 100 mph tests were not shown in 
Figure 5, because they were very close to those for 60 mph. Thus, they were eliminated to reduce crowding of  
the plots. 
 
The Reynolds numbers corresponding to the tested wind speeds were 0.105 x 105, 0.21 x 105, 0.42 x 105, 0.63 x 105, and 
0.76 x 105, respectively. Each of these magnitudes is less than 5x105, which is the critical value of the Reynolds number 
at which a boundary layer in external flow over a smooth cylinder transitions from laminar to turbulent. For cylinders 
that are not smooth, transition occurs earlier, at Reynolds numbers that are around 2x105, Figure 6. Therefore, all the 
data collected using this setup were below the critical values above which the effects of turbulent boundary layers on 
the pressure distribution could be observed.   
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Figure 5: Plots of pressure distributions obtained in the lab. 

 
To demonstrate this and give students a chance to compare their data with others for which the boundary layers were 
turbulent, several curves that are available in the literature were digitised and plotted next to the data students had 
collected. A sample stack of such plots is shown in Figure 5. The curve corresponding to a speed of 4.6 m/s had been 
obtained from an experiment that tested a cylinder of diameter D = 1 m in an airstream speed of 4.6 m/s. This 
corresponded to a Reynolds number of 2.84 x 105 [6]. It can be seen from Figure 5 that a flow with a Reynolds number 
of 2.84x105 helps the fluid recover the lost pressure much more effectively than the ones students had been able to test. 
This behaviour agrees with theory [3-7]. 
 

 
 

Figure 6: Drag coefficient for different objects. 
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Figure 7: Flow patterns around a circular cylinder; (a) inviscid fluid [12]; and (b) viscous fluid [13]. 
 
COMPARING PRESSURE DISTRIBUTIONS IN INVISCID AND VISCOUS FLOWS 
 
Looking at Figure 4 and Figure 5, it can be seen that at and near the leading edge, all measured pressure distributions 
are very close to those of an inviscid fluid. However, if one follows the fluid particle as it moves towards the trailing 
edge, the discrepancies between inviscid theory and the behaviour of real fluids become large. This is explained by the 
occurrence of flow separation and the subsequent formation of a viscous wake, Figure 7. In inviscid flow, fluid particles 
are accelerated while moving on the upstream half of the cylinder and decelerated on the downstream half of it. Since 
there is no dissipation of energy, pressure decreases on the upstream side are converted from pressure to kinetic energy 
there. The reverse occurs on the downstream side, which causes pressure to increase along the downstream half. The 
result is that the fluid particle stays on the surface of the cylinder at all times and leaves it with a speed equal to that 
which the same particle had when it first came in contact with the cylinder.  
 
In real flows, however, viscosity is present, and a fluid particle that moves in the vicinity of the surface of the cylinder 
is within the viscous boundary layer, where, from boundary-layer theory, the pressure is the same as that existing 
outside the boundary layer [3][6][7]. Because this particle is subjected to a constant pressure, its decreases in kinetic 
energy during motion are not converted into pressure. Rather, they become losses created by frictional resistance. 
Therefore, when the particle enters the downstream half of the cylinder, its kinetic energy is smaller than it would have 
been in inviscid flow; and, somewhere along its path, it becomes unable to keep moving forward, stops, and external 
pressures force it to reverse directions. Reynolds numbers that are above critical values cause the boundary layer to 
become turbulent. The contribution of a turbulent boundary layer is that fluid particles within it have more linear 
momentum and kinetic energy than those in a laminar boundary layer under similar circumstances. Thus, turbulent 
boundary layers allow particles within it to travel farther along the contour of the cylinder and, are thus able to delay 
separation beyond the points where it would occur if the boundary layer had been laminar. This delayed separation 
increases pressure recovery, reduces the size of the viscous wake behind the cylinder and, ultimately, reduces total drag. 
This is why, for example, golf balls have dimples; dimples cause turbulence in the boundary layer [1]. 
 
CONCLUSIONS 
 
Hands-on exercises were designed and tested in a subsonic wind tunnel to study pressure distributions around a circular 
cylinder in cross flow. They allowed students to use their own data to examine how the pressure on the surface of the 
cylinder changes with the location of a given point along the circumference of the middle cross-section of the cylinder and 
with the magnitude of the Reynolds number of the cross-flow. Results obtained were very similar to those in the research 
literature. Published data were used to augment the set of collected data beyond the maximum speed achieved by the wind 
tunnel. Results were used to demonstrate how viscous flow behaviour in the upstream half of the cylinder differed from 
that on its downstream half, and to examine how Reynolds numbers above the critical value that trips turbulence enhance 
the ability of a viscous flow to recover pressure on the downstream side of the cylinder and to reduce drag.  
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